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STUDIES OF THE SEPARATION OF HYDROGEN ISOTOPES 
BY A PRESSURE SWING ADSORPTION PROCESS 

* 
Y.  W. Wong, F. B. H i l l ,  and Y.  N.  I. Chan 

Department of Energy and Environment 
Brookhaven N a t i o n a l  Laboratory 

Upton, New York 11973 

ABSTRACT 

A t h e o r e t i c a l  and exper imenta l  s tudy  w a s  made of t h e  mech- 
anism of t h e  s e p a r a t i o n  of a m i x t u r e  of hydrogen i s o t o p e s  by a 
two-column p r e s s u r e  swing a d s o r p t i o n  p r o c e s s  i n  which vanadium 
hydr ide  was used as t h e  s o l i d  phase.  T h e o r e t i c a l  p r e d i c t i o n s  of 
p r o c e s s  performance were compared w i t h  d a t a  from p r o c e s s  exper i -  
ments u s i n g  hydrogen c o n t a i n i n g  a t r a c e  of HT as f e e d .  For  pro- 
c e s s  o p e r a t i o n  wholly w i t h i n  t h e  monohydride phase,  a p o s t u l a t e d  
i s o t o p e  e f f e c t  i n  t h e  rates of hydrogen a b s o r p t i o n  and d e s o r p t i o n  
appeared t o  c o n t r o l  p r o c e s s  performance. When p r o c e s s  o p e r a t i o n  
involved t r a n s i t i o n s  back and f o r t h  between t h e  monohydride and 
d i h y d r i d e  phases ,  p rocess  performance w a s  determined mainly by an 
e q u i l i b r i u m  i s o t o p e  e f f e c t .  

INTRODUCTION 

It h a s  been recognized f o r  many y e a r s  t h a t  hydrogen i s o t o p e s  

can b e  s e p a r a t e d  by chromatographic  techniques .  Thus, a s  exam- 

p l e s ,  Glueckauf and K i t t  (1) achieved complete s e p a r a t i o n  of 

gaseous deuter ium and prot ium m i x t u r e s  by us ing  a displacement  

technique  i n  a supported pa l lad ium column. Smith and Carter (2)  

t e s t e d  t h e  s e p a r a t i o n  of t r i t ium-pro t ium m i x t u r e s  u s i n g  s i l i ca  

columns a t  l i q u i d  n i t r o g e n  tempera tures  and a t t a i n e d  good reso-  
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4 2 4  WONG, HILL, AND CHAN 

l u t i o n  us ing  e l u t i o n  chromatography. Even though l a r g e  separa-  

t i o n  f a c t o r s  are o b t a i n e d  v i a  techniques  such as t h e s e ,  which are  

u s e f u l  i n  s e p a r a t i o n s  f o r  a n a l y t i c a l  purposes ,  t h e s e  techniques  

when employed on a l a r g e  scale have t h e  d isadvantages  t h a t  they  

are n o t  cont inuous  and throughput  wi th  them i s  small .  

I n  r e c e n t  y e a r s ,  numerous techniques  have been d e v i s e d  which 

permi t  cont inuous  o r  semicont inuous o p e r a t i o n  of chromatographic  

s e p a r a t i o n  p r o c e s s e s  which can b e  s c a l e d  up t o  throughputs  of i n -  

d u s t r i a l  i n t e r e s t .  Such techniques  i n c l u d e  v a r i o u s  forms of pre-  

p a r a t i v e  chromatography ( 3 ) ,  p r e s s u r e  swing a d s o r p t i o n  ( 4 , 5 ) ,  

cont inuous  c o u n t e r c u r r e n t  o p e r a t i o n  ( 6 ) ,  c y c l i n g  zone a d s o r p t i o n  

(7,8), and p a r a m e t r i c  pumping (9,lO). P r e p a r a t i v e  chromatography 

techniques  and p r e s s u r e  swing p r o c e s s e s  have been wide ly  adopted 

i n d u s t r i a l l y .  Some of t h e s e  p r o c e s s e s  and t h e  v e r y  c l o s e l y  re- 

l a t e d  p r o c e s s ,  p a r a m e t r i c  pumping, are c a p a b l e  of producing v e r y  

l a r g e  s e p a r a t i o n  f a c t o r s .  Continuous c o u n t e r c u r r e n t  s e p a r a t i o n s  

are a l s o  used i n d u s t r i a l l y  b u t  r e q u i r e  t h e  u s e  of moving beds.  

I n  t h i s  s t u d y ,  a t t e n t i o n  i s  focused  on t h e  p r e s s u r e  swing 

p r o c e s s  and i t s  u s e  i n  s e p a r a t i n g  a t r i t ium-pro t ium mixture .  

Hamrin and Weaver (11) have a t tempted  t o  u s e  t h i s  p r o c e s s  t o  

s e p a r a t e  deuter ium and prot ium and o b t a i n e d  s m a l l  deuter ium en- 

r ichments .  The palladium-hydrogen system w a s  used i n  t h e i r  

s tudy.  T h i s  system e x h i b i t s  a s o - c a l l e d  normal i s o t o p e  e f f e c t .  

That i s ,  t h e  s o l i d  phase a f f i n i t y  towards hydrogen i s o t o p e s  in-  

c r e a s e s  i n  t h e  o r d e r ,  t r i t i u m ,  deuter ium, prot ium. Vanadium hy- 

d r i d e  w a s  chosen f o r  t h e  p r e s e n t  s t u d y  because  of i t s  p r e f e r e n -  

t i a l  up take  of a heavy i s o t o p e  of hydrogen i n  t h e  presence  of a 

l i g h t  i s o t o p e .  It is t h u s  p r e f e r r e d  f o r  t h e  removal of a trace 

q u a n t i t y  of a heavy i s o t o p e  from a m i x t u r e  w i t h  a l i g h t  i s o t o p e .  

The e q u i l i b r i u m  and k i n e t i c  p r o p e r t i e s  of t h e  vanadium-hy- 

drogen- t r i t ium system p e r t a i n i n g  t o  i s o t o p e  exchange have been 

measured by R e i l l y  and W i s w a l l  ( 1 2 ) ,  W i s w a l l  and R e i l l y  ( 1 3 ) ,  and 

Wong and H i l l  ( 1 4 ) .  The r e s u l t s  of t h e s e  i n v e s t i g a t i o n s  were 
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PRESSURE SWING ADSORPTION PROCESS 425 

used i n  t h e  p re sen t  study t o  guide t h e  des ign  and i n t e r p r e t a t i o n  

of p re s su re  cyc l ing  experiments. 

The p resen t  work was undertaken i n  o rde r  t o  ob ta in  an under- 

s tanding  of t h e  phenomena c o n t r o l l i n g  t h e  performance of t h e  

p re s su re  swing process  when ca r ry ing  out  t h e  s t a t e d  sepa ra t ion .  

To t h i s  end, an equi l ibr ium theory  of t h e  opera t ion  of t h e  pres- 

s u r e  swing adsorp t ion  process  a s  appl ied  t o  t h e  hydrogen i so tope-  

vanadium hydr ide  system i s  presented ,  experiments a r e  r epor t ed  

on t h e  sepa ra t ion  of an  HT-HZ mixture ,  and theory  and experiment 

are compared. Optimization of t h e  process  i s  no t  examined o r  

d i scussed .  A pre l iminary  account of t h i s  work appears e l s e -  

where (15).  

PROCESS DESCRIPTION 

The ve r s ion  of p re s su re  swing adso rp t ion  examined h e r e  i s  t h e  

two-bed process  known as h e a t l e s s  adsorp t ion .  A s  i l l u s t r a t e d  i n  

Fig. I, t h e r e  a r e  fou r  s t e p s  dur ing  a complete cyc le  of  opera t ion .  

I n  the  f i r s t  s t e p ,  a h igh  p res su re  feed  mixture  i s  continuously 

suppl ied  t o  Bed 1. During t h i s  s t e p ,  sorbable  components a r e  

taken up by Bed 1. A t  t h e  same time, a p o r t i o n  of t h e  p u r i f i e d  

e f f l u e n t  i s  taken of f  as h igh  p res su re  product,  and t h e  remainder 

i s  t h r o t t l e d  down t o  a lower p re s su re  and d i r e c t e d  t o  Bed 2 t o  

purge previous ly  sorbed spec ies .  I n  t h e  second s t e p ,  Bed 2 is  

p res su r i zed  wi th  f eed ,  and Bed 1 undergoes blowdown t o  t h e  purge 

pressure .  The t h i r d  and f o u r t h  s t e p s  are t h e  same a s  t h e  f i r s t  

and second r e s p e c t i v e l y  except t h a t  t h e  po in t s  of feed introduc- 

t i o n  and purge and blowdown removal are reversed  wi th  r e spec t  

t o  Beds 1 and 2 .  The novel ty  of t h i s  process l i e s  i n  t h e  f a c t  

t h a t ,  a t  l e a s t  as a t h e o r e t i c a l  l i m i t ,  wi th  s u f f i c i e n t  p u r i f i e d  

product used a s  purge,  complete removal of t h e  sorbable  o r  pre- 

f e r e n t i a l l y  sorbable  components from t h e  h igh  p res su re  product 

can be achieved. 
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STEP I 
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Figure  1. S t e p s  i n  t h e  p r e s s u r e  swing a d s o r p t i o n  process .  

Two modes of o p e r a t i o n  of t h i s  p r o c e s s  w e r e  used.  A so- 

c a l l e d  s ingle-phase  o p e r a t i n g  mode w a s  r e a l i z e d  when o p e r a t i n g  

a t  373 K and a two-phase mode a t  298 K.  P a t h s  f o r  t h e s e  modes 

on t h e  pressure-composi t ion  diagram f o r  t h e  vanadium-hydrogen 

system are shown i n  F i g u r e  2 .  P r e s s u r e  c y c l i n g  between 103 kPa 

and 1030 kPa a t  373 K r e s u l t e d  i n  o p e r a t i o n  wholly w i t h i n  t h e  

monohydride phase  where t h e  composi t ion w a s  VH- o.76. 

between t h e  same p r e s s u r e  limits a t  298 K r e s u l t e d  i n  c y c l i n g  

between the monohydride and d i h y d r i d e  (VH-1.72) phases .  

Opera t ion  
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lo4 1 I I I I 1 

'.... 

SINGLE PHASE MODE 

TWO-PHASE MODE 

427 

10 
0.6 0.8 1.0 1.2 1.4 1.6 1.8 

H / V ,  HYDROGEN-TO-VANADIUM ATOM RATIO 

Figure  2. Operating modes of t h e  p re s su re  swing adso rp t ion  
process.  
H i l l  ( 1 4 ) .  

Pressure-composition d a t a  from Wong and 

THEORY 

Shendalman and Mi tche l l  (16) p resented  an equi l ibr ium theory 

of t h e  sepa ra t ion  of a two-component mixture v i a  p re s su re  swing 

adsorp t ion .  They t r e a t e d  t h e  s i t u a t i o n  i n  which the  c y c l i c  

opera t ion  i s  i so thermal ,  one component i s  i n e r t  and is  p resen t  

i n  g r e a t  excess,  and t h e  adso rp t ion  isotherm is  l i n e a r .  Chan 

_ -  e t  a l .  (17)  extended t h e  theory  t o  t h e  case  i n  which both  com- 

ponents a r e  adsorbable,  and t h e  t r a c e  component i s  adsorbed pre- 

f e r e n t i a l l y .  I n  both cases ,  development of t he  theory proceeded 
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428 WONG, HILL, ANTI CHAN 

a long  the l i n e s  of t h e  t h e o r y  o f  p a r a m e t r i c  pumping ( 1 8 ) ,  and 

t h e  p e n e t r a t i o n  d i s t a n c e  concept  (19) w a s  used .  

I n  t h i s  s t u d y ,  the t r e a t m e n t  of Chan e t  a l .  ( 1 7 )  is a p p l i e d  

t o  t h e  removal of a trace q u a n t i t y  of HT from a stream of H 2  

u s i n g  vanadium h y d r i d e  as t h e  s o l i d  phase .  

v i t y ,  the t h e o r y  w i l l  b e  p r e s e n t e d  f o r  the s e p a r a t i o n  conducted 

wholly i n  t h e  monohydride phase.  

For  t h e  s a k e  of  bre-  

The b a s i c  assumption i n  e q u i l i b r i u m  t h e o r y  is  that  the g a s  

and s o l i d  phase are a lways  a t  e q u i l i b r i u m  w i t h  r e s p e c t  t o  t h e  

d i s t r i b u t i o n  of i s o t o p i c  s p e c i e s .  The a p p l i c a b l e  e q u i l i b r i u m  

r e l a t i o n  i s  determined from t h e  d e f i n i t i o n  of t h e  s e p a r a t i o n  

f a c t o r .  For  t h e  exchange r e a c t i o n  o f  i n t e r e s t  

H T ( d  + H(VHOe7) "c H2(g) + T(VHoe7) (1) 

t h e  s e p a r a t i o n  f a c t o r  i s  d e f i n e d  as 

T h i s  d e f i n i t i o n  i s  v a l i d  when t r i t i u m  i s  p r e s e n t  a t  a trace 

level.  A s  shown by Wong and H i l l  ( 1 4 ) ,  a is a f u n c t i o n  of t e m -  

p e r a t u r e  b u t  n o t  of p r e s s u r e .  

By i n s p e c t i o n  of the pressure-composi t ion  diagram f o r  t h e  

vanadium-hydrogen system ( 1 4 ) ,  one sees t h a t ,  i n  t h e  monohydride 

phase,  a pressure-composi t ion  i s o t h e r m  w i t h i n  t h e  p r e s s u r e  r a n g e  

of exper imenta l  i n t e r e s t  may b e  approximated by  

l n p  = aCH + b ( 3 )  

where a and b are  f u n c t i o n s  of  tempera ture .  

Material b a l a n c e s  f o r  hydrogen and t r i t i u m  over  a d i f f e r e n -  

t i a l  l e n g t h  of a column are  

1 + (1-E) - - = 0 2 a t  

a cT a (ucHT) 
E [% + 4 az + (1-E) - a t  = 0 

( 4 )  
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PRESSURE SWING ADSORPTION PROCESS 429 

In these  equations t h e  gas flow is  assumed t o  be one-dimensional, 

and a x i a l  d i spe r s ion  i s  absent .  

With the  use  of Equations ( 2 )  and (3 )  t o  e l imina te  C and 5 
i n  Equations ( 4 )  and (5) ,  and by assuming the  p e r f e c t  gas  l a w  and 

n e g l i g i b l e  pressure  drop ac ross  a bed, t he  following equat ions  

may be obtained 

T 

E 1-E 3 EP au 
RT Zap a t  RT az 
-- + -1 + - - - = o  
L 

and 

- 0 (7) 2 ap a t  

Following Chan e t  a l .  (17) and us ing  t h e  method of charac- 

terist ics (20) t o  so lve  Equations (6) and (7 ) ,  t he  following 

r e s u l t s  can be  obtained. During t h e  cons tan t  p re s su re  and purge 

s t e p s ,  t h e  position-versus-time c h a r a c t e r i s t i c s  a r e  l i n e a r ,  and 

no changes i n  composition occur along them. Penet ra t ion  d i s -  

tances  f o r  t hese  s t e p s  a r e  

For the  p re s su r i za t ion  and blowdown s t e p s  both t h e  charac- 

t e r i s t i c  pos i t i on  changes and the  composition changes along t h e  

c h a r a c t e r i s t i c :  

z = J z L  (10) H 

where 
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4 30 WONG, HILL, AND CHAN 

Again f o l l o w i n g  Chan e t  a l . ,  i t  can  b e  shown t h a t  t h e  c r i t i -  

c a l  purge-to-feed r a t i o  i s  g i v e n  by 

When G?Gcrit and %<-h, no HT w i l l  a p p e a r  i n  t h e  h i g h  p r e s s u r e  

e f f l u e n t  a t  s t e a d y  state;  converse ly ,  when G<Gcrit removal of 

HT w i l l  b e  incomplete .  

c r i t  The movement of characteristics f o r  a case i n  which G>G 

is  shown i n  F i g u r e  3 .  For  t h e  example shown, t h e  upper  and 

lower columns a r e  i n i t i a l l y  e q u i l i b r a t e d  w i t h  low and h i g h  p r e s -  

s u r e  f e e d ,  r e s p e c t i v e l y ,  and L 

The c h a r a c t e r i s t i c s  shown are  t h o s e  which d i v i d e  t h e  column i n t o  

segments c o n t a i n i n g  d i f f e r e n t  mole f r a c t i o n s  of  HT. yav d e n o t e s  

t h e  average  mole f r a c t i o n  w i t h i n  t h e  column r e s u l t i n g  from pres-  

s u r i z a t i o n .  The procedure  f o r  c a l c u l a t i n g  t h i s  q u a n t i t y  i s  

similar t o  t h a t  g i v e n  by Chan e t  a l .  A g e n e r a l  p r o g r e s s i o n  of 

tritium f r o n t s  toward t h e  exhaus t  ends of t h e  columns i s  seen .  

The product  mole f r a c t i o n  f o r  a g i v e n  h a l f  c y c l e  i s  e q u a l  t o  t h e  

product  mole f r a c t i o n  f o r  the p r e v i o u s  h a l f - c y c l e  m u l t i p l i e d  by 

t h e  f a c t o r  K ,  o r  

= 3LH, zH = 0.82 L L and h = 10%. 

PR 
ynfl = K y F  n = 1,2,3, ... 
F 

I n i t i a l l y  yPR = Ky . Hence 1 

and,  s i n c e  i t  t u r n s  o u t  t h a t  K < 1 ,  

l i m  yPR = 0 
n-tm n 

When o p e r a t i n g  w i t h  G<G HT does appear  i n  the h i g h  c r i t ’  
p r e s s u r e  product  stream a t  s t e a d y  s ta te .  This s i t u a t i o n  i s  de- 

p i c t e d  i n  F i g u r e  4 f o r  t h e  case i n  which __ < h.  For  t h i s  c a s e  

p a r t  of the HT i n t r o d u c e d  d u r i n g  the f e e d  s t e p  i s  r e t a i n e d  i n  t h e  

h-tH 
J 
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1' P' T T I' P' T T lyF IF T T 

0 zAt 4At 6Ai 
1-  

F i g u r e  3 .  I l l u s t r a t i o n  of t h e  movement of c h a r a c t e r i s t i c s  f o r  
a c a s e  f o r  which G>Gcrit. 

column a f t e r  blowdown. I n  t h i s  f i g u r e  t h e  h i g h  p r e s s u r e  pene t ra -  

t i o n  d i s t a n c e  i s  g r e a t e r  than  t h a t  a t  t h e  low p r e s s u r e .  I n  f a c t  

$ = 4 L and h = 10 LL. The f e e d  c o n c e n t r a t i o n  e v e n t u a l l y  ap- L 
p e a r s  i n  t h e  h igh  p r e s s u r e  product  stream. 

LLJ 
AB LLJ and Bc = 1--. The mole I n  F i g u r e  4 ,  by geometry, - = - AC LH AC 4r ~~ - 

f r a c t i o n  emerging from t h e  column i n i t i a l l y  a t  h i g h  p r e s s u r e  is 
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PRESSURE SWING ADSORPTION PROCESS 4 3 3  

K y r ,  n = 1 , 3 , 5 , .  . . , dur ing  t h e  t i m e  i n t e r v a l  AB and yF during 

BC. Hence t h e  average mole f r a c t i o n  i s  

LLJ PR LLJ F PR - -  Kyn + (1 - -) y , n = 1,3,5,... (18) 
53 'n+l - % 
F The i n i t i a l  condi t ion  i s  yPR = Ky . 

mole f r a c t i o n  emerging from t h e  column i n i t i a l l y  a t  low p res su re  

is  

S imi l a r ly ,  t h e  average HT 1 

(19) 
kJ LLJ F 

= - ~y~~ + (1 - -1 KY , n = 0,2,4,.. . 
% I n  LH 

F The i n i t i a l  condi t ion  i s  y r  = y . 

product mole f r a c t i o n  u n t i l  t he  feed  t o  t h e  column i n i t i a l l y  a t  

low pressure  breaks through i n t o  t h e  product stream. 

during t h e  ha l f  cyc le  n = 2q + 1 where q i s  the  smal les t  i n t ege r  

such t h a t  

Equations (18) and (19) can be  used t o  c a l c u l a t e  t h e  average 

This occurs 

Af te r  t h i s  ha l f  cyc le ,  t he  high p res su re  e f f l u e n t  assumes a 

steady p a t t e r n  which c o n s i s t s  of concent ra t ion  f r o n t s  derived 

from t h e  feed  and from the  purge introduced t o  t h i s  column during 

the  previous ha l f  cycle.  For the  s i t u a t i o n  depicted i n  Figure 4 ,  

t he  con t r ibu t ion  from t h e  feed can be f u r t h e r  d iv ided  i n t o  two 

pa r t s :  

during t h e  cons tan t  p re s su re  feed s t ep .  

a f t e r  breakthrough of t h e  feed  introduced during the  l a t t e r  s t e p ,  

t he  high pressure  product mole f r a c t i o n  is  made up of fou r  con- 

t r i b u t i o n s  whose weighted sum is  

t h e  p a r t  derived from p res su r i za t ion  and t h a t  introduced 

One sees t h a t  immediately 
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4 34 WONG, HILL,  AND CHAN 

After t h i s  ha l f  cyc le ,  a s  can be  seen  from F igure  4 ,  t h e  

average mole f r a c t i o n  from both columns can be  described by 

Equation (20) except t h a t  t h e  f a c t o r  K i s  absent  from t h e  second 

term. It should be poin ted  out  t h a t  Equation (20) i s  no t  a gene- 

r a l  expression f o r  t h e  breakthrough and mole f r a c t i o n  t h e r e a f t e r .  

Several  o the r  c h a r a c t e r i s t i c  p a t t e r n s  a r e  poss ib l e ,  and they are 

influenced by the  pene t r a t ion  d i s t a n c e s  $ and LL. 

2 h ,  a l l  t h e  c h a r a c t e r i s t i c s  in- For the  case  i n  which - h-% 
J 

troduced during t h e  feed  s t e p  l eave  t h e  column during blowdown. 

A s  a r e s u l t ,  they  w i l l  no t  appear i n  t h e  product stream. The 

breakthrough mole f r a c t i o n  becomes 

(h-qALL) J - LLJ LH-(h-qALL) J 

Lk 
KyF + 

LH 

and t h e  mole f r a c t i o n  t h e r e a f t e r  i s  

PR LLJ PR Ah 
Yn+1 = 41 KYn + Yav 

While a n a l y t i c a l  s o l u t i o n  of Equations (18)-(22)  o r  o t h e r  

similar equat ions  i s  s t r a igh t fo rward ,  i t  i s  j u s t  as convenient 

t o  eva lua te  them i n  s tepwise  fash ion .  The l a t t e r  approach w a s  

taken i n  the  p re sen t  work. Constants r equ i r ed  f o r  numerical  

eva lua t ion  of t h e  s o l u t i o n s  were obta ined  from Wong and H i l l  ( 1 4 ) .  
Development of t h e  theory f o r  t h e  two-phase opera t ing  mode 

fo l lows  exac t ly  t h e  same course as t h a t  given above except t h a t  

the appropr i a t e  isotherm and sepa ra t ion  f a c t o r  must b e  used. A s  

ind ica ted  i n  F igure  2 ,  t he  isotherm a t ,  s ay ,  298 K i s  h igh ly  

nonl inear .  It was approximated f o r  p re sen t  purposes by a s e r i e s  

of s t r a i g h t  l i n e s .  The temperature dependence of t h e  sepa ra t ion  

f a c t o r  i n  the  monohydride phase was measured by Wong and H i l l  

(14) and i n  t h e  d ihydr ide  phase by Wiswall and R e i l l y  (13) .  

Values from these  sources  were used f o r  t h e  extreme compositions 

of a two-phase experiment. Values a t  i n t e rmed ia t e  compositions 
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PRESSURE SWING ADSORPTION PROCESS 435 

were estimated by combining the  extreme va lues  according t o  t h e  

l eve r  r u l e .  

Rate processes of a l l  k inds  w e r e  ignored i n  the  development 

of t he  above equilibrium theory. Therefore,  when rate processes 

a r e  important t he  theory should no t  be  expected t o  agree  w e l l  

wi th  t h e  experiment. However t h e  theory should provide bounding 

limits, v a l i d  when a l l  rate processes are f a s t .  

EXPERIMENTAL 

Apparatus 

A schematic diagram of the  appara tus  is shown i n  F igure  5 .  

Each column w a s  made of s t a i n l e s s  steel ,  had an i n s i d e  diameter 

of 0.77 x lo-* m, and contained 0.06 kg of vanadium hydr ide  par- 

t i c l e s .  The packed bed had a void f r a c t i o n  of 0.5 and a length  

TO 

COUNTER 
-PROPORTIONAL 

JACKET ED 
,COLUMNS \ 

TO VENT 

t 
I 

@ - PFiRESFRE 
a - M A S S  FLOW 

METER 
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436 WONG, HILL, AND CHAN 

of 45.7 x m.  The average p a r t i c l e  size was 770 x m 

(20-25 mesh). 

less s t e e l  f i l t e r .  S t a i n l e s s  s t e e l  wool was used t o  f i l l  t h e  

space above the  bed. The temperature of t h e  column w a s  main- 

ta ined  cons tan t  by means of a j a c k e t  and cons t an t  temperature 

c i r c u l a t i n g  bath.  S t a i n l e s s  steel  sheathed chromel-alumel 

thermocouples 0.16 x 10 

c e n t e r l i n e  of t h e  columns wi th  h o t  j unc t ions  loca t ed  approxi- 

mately 1 .3  x lo-’ m from t h e  product ends. The response time of 

these  thermocouples w a s  1.2 s. Res is tance  hea t ing  w i r e s  wrapped 

around t h e  ou t s ide  of t h e  j a c k e t  w e r e  used t o  raise t h e  column 

temperature t o  l e v e l s  as h igh  as 720 K f o r  t h e  purpose of ac t iva -  

t i n g  t h e  vanadium p a r t i c l e s .  Hydrogen gas  a t  h igh  p res su re  w a s  

d i r ec t ed  i n t o  t h e  bottom of one column and purge gas  a t  low pres- 

su re  was introduced i n t o  t h e  top of t h e  o t h e r .  This w a s  achieved 

by a so-called feed  and purge flow d i r e c t i o n  c o n t r o l l e r  on t h e  

feed s i d e  and check v a l v e s  on t h e  product s i d e .  The flow d i rec-  

t i o n  c o n t r o l l e r  cons i s t ed  of an arrangement of four  a i r -opera ted  

va lves  ac tua ted  by s o l i d  state t imers .  The va lves  were operated 

i n  such a way t h a t  one column w a s  f e d  whi le  t h e  o t h e r  w a s  purged 

and v i c e  ve r sa .  

The bed w a s  supported a t  t h e  bottom by a s t a i n -  

-2 m i n  d iameter  were i n s t a l l e d  along t h e  

A s  i nd ica t ed  i n  the  Process Descr ip t ion  s e c t i o n ,  t h e  purge 

was derived from t h e  h igh  p res su re  column e f f l u e n t .  Thus p a r t  

of t he  stream emerging from t h e  high p res su re  column was with- 

drawn as product and t h e  r e s t  w a s  l e t  down t o  a lower p re s su re  

and introduced i n t o  t h e  low p res su re  column a s  purge.  

ing of t h e  p re s su re  occurred as a r e s u l t  of t h e  drop i n  p re s su re  

across  a f i n e  metering va lve .  The high p res su re  stream w a s  pre- 

vented from d i r e c t  e n t r y  i n t o  t h e  low p res su re  column by a check 

valve.  The p res su re  l e v e l s  i n  the  two columns w e r e  maintained 

by the  feed  gas  r egu la to r  and t h e  r e s p e c t i v e  back p r e s s u r e  regu- 

l a t o r s .  The column p res su res  and t h e  p re s su re  drops ac ross  t h e  

columns were measured by t h r e e  h igh  p r e c i s i o n  p res su re  gauges. 

The flow r a t e s  of t h e  f eed ,  t he  product and t h e  purge w e r e  moni- 

The lower- 
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PRESSURE SWING ADSORPTION PROCESS 437 

tored  by mass flow meters. A l l  t h e  va lves  used, except t h e  f i n e  

metering va lve ,  were bellow-sealed va lves .  

p ropor t iona l  counter of t h e  kind described by Berns te in  & Ballan- 

t i n e  (21) w a s  used t o  monitor t h e  t r i t i u m  level i n  t h e  h igh  pres-  

s u r e  product stream. The gas  flowing through t h e  counter w a s  a 

mixture of t h e  product gas and P-10 counting gas. 

bined and mixed i n  a gas propor t ioner .  

A f low-through 

They were com- 

Materials 

Hydrogen was obtained from the  Matheson G a s  Co., Rutherford,  

N. J . ,  wi th  a p u r i t y  of 99.999%. Gaseous tritium w a s  ob ta ined  

from the  New England Nuclear Corp., Boston, Mass., i n  the  form 

of a one-curie ampoule, carrier f r e e .  A master ba tch  of tri- 

t i a t e d  hydrogen w a s  prepared by d i l u t i n g  the  t r i t i u m  wi th  -3 m 
of t h e  Matheson hydrogen. Feed f o r  the experiments (-0.1 ppb 

mole f r a c t i o n  HT i n  H2) w a s  made up by d i l u t i o n  of 0.07 m3 of t he  

master batch wi th  about 3 m of t he  Matheson hydrogen. Ingots  of 

vanadium were obtained from the  Gallard-Schlesinger Chemical 

Manufacturing Corp., Carle Place ,  N. Y. The vanadium p u r i t y  w a s  

99.5% V minimum with major impur i t i e s  i n  percent ,  0.15 S i ,  0.05 

Fe, 0.04 N ,  0.02 0, 0.03 C ,  0.01 a l l  o the r  metals.  Upon r e c e i p t  

t h e  ingots  w e r e  p a r t i a l l y  hydrided t o  f a c i l i t a t e  crushing and 

s i z i n g  wi th  standard s i eves .  

3 

3 

Procedure 

The bed w a s  a c t i v a t e d  i n  t h e  following way. Af te r  charging 

the  vanadium p a r t i c l e s  t o  t h e  column, the  bed w a s  outgassed a t  

720 K u n t i l  a vacuum b e t t e r  than 7 x 10 Pa w a s  a t t a i n e d .  The 

bed was then cooled t o  room temperature and pressur ized  wi th  hy- 

drogen t o  1030 kPa. 

accompanied by r ap id  hea t  release. 

100 K w a s  no t  unusual. 

t he  bed w a s  considered t o  be f u l l y  ac t iva t ed .  P r i o r  t o  each 

p res su re  cyc l ing  run, one column w a s  s a tu ra t ed  wi th  feed gas a t  

h igh  pressure  pH and t h e  o the r  w a s  s a tu ra t ed  wi th  t h e  s a m e  gas 

-4 

Hydrogen absorp t ion  was very  r ap id  and was 

A bed temperature r i s e  of 

Af t e r  car ry ing  ou t  t h i s  procedure t w i c e ,  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



438 WONG, HILL, AND CHAN 

a t  low p r e s s u r e  pL. 

drogen g a s  a t  pH t o  one column a t  a rate of 3.33 x 10 

and a l lowing  t h e  emerging stream t o  b l e e d  down t o  low p r e s s u r e  

p and f l o w  through t h e  o t h e r  column. The e f f l u e n t  of t h e  l a t t e r  

column w a s  monitored by t h e  i n t e r n a l  p r o p o r t i o n a l  counter  u n t i l  

a s t e a d y  state count  ra te  w a s  reached.  The f e e d ,  product  and 

purge f l o w  rates were then  a d j u s t e d  t o  t h e  c o n d i t i o n s  d e s i r e d  f o r  

t h e  exper imenta l  r u n .  

s o l i d  s t a t e  t i m e r s  which c o n t r o l l e d  t h e  swi tch ing  of t h e  air-  

opera ted  v a l v e s .  The count  r a t e  of t r i t i u m  i n  t h e  product  stream 

w a s  monitored u n t i l  a s t e a d y  s t a t e  w a s  achieved.  Attainment  of 

good r e p r o d u c i b i l i t y  r e q u i r e d  r e a c t i v a t i o n  of t h e  b e d s  a f t e r  n o t  

more than  f o u r  r u n s .  

T h i s  w a s  ach ieved  by f e e d i n g  t r i t i a t e d  hy- 
-6 3 -1 s t d  m s 

L 

The run  w a s  s t a r t e d  by a c t i v a t i n g  t h e  

A s  i n d i c a t e d  earlier t h e  p r e s s u r e  c y c l i n g  experiments  were 

c a r r i e d  o u t  i n  two d i f f e r e n t  o p e r a t i n g  modes corresponding t o  

c y c l i n g  wholly w i t h i n  t h e  monohydride phase and between t h i s  

phase and t h e  d i h y d r i d e  phase.  The monohydride h a s  a body- 

c e n t e r e d  t e t r a g o n a l  l a t t i c e  s t r u c t u r e  and t h e  d i h y d r i d e ,  a f a c e -  

c e n t e r e d  cubic  s t r u c t u r e .  The s t r u c t u r e  remained c o n s t a n t  w i t h  

l i t t l e  change i n  hydrogen c o n t e n t  dur ing  o p e r a t i o n  i n  t h e  s i n g l e  

phase mode but  v a r i e d  between t h e  two s t r u c t u r e s  w i t h  a l a r g e  

corresponding change i n  hydrogen c o n t e n t  dur ing  two-phase mode 

opera t ion .  Absorpt ion and d e s o r p t i o n  i n  t h e  s i n g l e  phase mode 

were r a p i d  p r o c e s s e s  whereas they  were slow i n  t h e  two-phase 

mode. A s  w i l l  b e  seen ,  d i f f e r e n c e s  i n  t h e  rates of t h e s e  pro- 

cesses i n  t h e  two modes l e d  t o  s t r i k i n g  d i f f e r e n c e s  i n  t h e i r  

s e p a r a t i o n  c h a r a c t e r i s t i c s .  

RESULTS AND DISCUSSION 

Single-Phase Operat ing Mode 

Experiments i n  t h i s  mode w e r e  conducted a t  373 K w i t h  pres -  

s u r e s  vary ing  i n  t h e  range  103 t o  1030 kPa (See F i g u r e  2 ) .  

i n f l u e n c e  of each of t h e  v a r i a b l e s ,  G ,  A t  and pH was determined.  

The 
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PRESSURE SWING ADSORPTION PROCESS 439 

P r i o r  t o  conduct of t h e  experiments o r  development of t h e  

theory i t  was a n t i c i p a t e d  t h a t  dep le t ion  of HT i n  t h e  high pres- 

s u r e  product would b e  p red ic t ed  by an  equi l ibr ium theory and 

would be  found experimentally.  When t h e  theory presented  i n  t h i s  

paper w a s  used t o  c a l c u l a t e  t h e  HT s t eady  state mole f r a c t i o n  t o  

be  expected i n  t h e  h igh  p res su re  product i n  t h e  s u b c r i t i c a l  G- 

range (G<G ) f o r  t h e  s i n g l e  phase experiments,  v a l u e s  neg l i -  

g i b l y  l e s s  than t h e  feed  mole f r a c t i o n  were pred ic ted .  This 

turned out t o  be t h e  case  because t h e  hydrogen conten t  of t h e  

monohydride v a r i e d  n e g l i g i b l y  dur ing  cyc l ing  over t h e  p re s su re  

ranges  used. A l s o  because of t h e  s m a l l  s o l i d  phase composition 

v a r i a t i o n ,  Gcrit w a s  ca l cu la t ed  t o  be very  c l o s e  t o  u n i t y ,  s o  

t h a t  complete removal of HT from t h e  h igh  p res su re  product could 

b e  expected only wi th  no producc withdrawal. 

t o  be  a process  tak ing  p l ace  under cond i t ions  of equi l ibr ium 

between gas  and s o l i d  phases,  i t  w a s  p red ic t ed  t h a t  no s e p a r a t i o n  

would be found over the  e n t i r e  G-range, and t h i s  p r e d i c t i o n  w a s  

independent of v a r i a t i o n  of A t  and p 

c r i t  

Thus when considered 

a s  w e l l  a s  G. 
H 

Ins tead  of t he  d e p l e t i o n  o r i g i n a l l y  a n t i c i p a t e d  o r  t h e  ab- 

sence of s epa ra t ion  p red ic t ed  by theory ,  what was  found exper i -  

menta l ly  was s i g n i f i c a n t  enrichment (F igures  6 t o  8 ) .  

It is  hypothesized t h a t  t h e  cause of t h e  enrichment w a s  an  

i so tope  e f f e c t  i n  t h e  rates of abso rp t ion  and deso rp t ion  of hy- 

drogen such t h a t  t r i t i u m  is  absorbed and desorbed more slowly 

than  hydrogen. Support f o r  t h i s  hypothes is  and a d i scuss ion  of 

some of t h e  consequences of t h e  k i n e t i c  i so tope  e f f e c t  w i l l  b e  

given p r i o r  t o  a d e t a i l e d  examination of t h e  experimental  

r e s u l t s .  

Absorption took p l ace  during t h e  p r e s s u r i z a t i o n  s t e p  and 

desorp t ion  during the  blowdown s t e p .  P res su re  changes occurred  

dur ing  these  s t e p s  on a time s c a l e  of t h e  o rde r  of 1 s o r  less 

i n  t h e  experiments whereas t h e  cons tan t  p re s su re  s t eady  flow rate  

f eed  and purge s t e p s  l a s t e d  f o r  h a l f  cyc le  t i m e s  ranging from 18 

t o  360 s. Wong and H i l l  (14) showed t h a t  t h e  ra te  of tritium- 
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t 
1.4 

EQUILIBRIUM THEORY 
1.0 

F: 3.5 X 

P,, = 1030 kPa  

T =  373K 
A t  = 60s 

std m3 <' 
PL= I03 kPo 

0.0 I(: 

7 

t x I O - ~ , ~  

Figure 6.  Dependence of h igh  p res su re  product mole f r a c t i o n  
t r a n s i e n t s  on purge-to-feed r a t i o .  Single-phase 
opera t ing  node. 

hydrogen exchange on vanadium monohydride occurring during t h e  

feed and purge s t e p s  was con t ro l l ed  by t h e  s u r f a c e  exchange 

r eac t ion ,  and they presented  an Arrhenius type equation f o r  t h e  

rate of exchange. From t h i s  equat ion  one can c a l c u l a t e  t h a t  t h e  

time s c a l e  f o r  exchange a t  373 K was approximately 90 s a t  103 

kPa and 20 s a t  1030 kPa. These times are camparable t o  o r  

sho r t e r  than most of t h e  ha l f -cyc le  times. It i s  the re fo re  

pos tu la ted  t h a t  exchange during t h e  feed  and purge s t e p s  w a s  

u sua l ly  a t  o r  near equi l ibr ium.  The observed enrichment then 

must be a s soc ia t ed  with t h e  r ap id  pressure  change s t e p s .  
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PRESSURE SWING ADSORPTION PROCESS 441 

Kinet ic  i so tope  e f f e c t s  are w e l l  known i n  exchange r eac t ions  

involving hydrogen and i t s  i so topes  ( 2 2 )  . Recent measurements 

of t h e  rate of hydrogen absorp t ion  by tantalum ( 2 3 )  and by LaCo5 

and LaNi5 a l l o y s  ( 2 4 )  showed t h a t  hydrogen was  taken up more 

quick ly  than a heavier  i so tope ,  deuterium. I f  t h i s  w e r e  t h e  

case  f o r  hydrogen and t r i t i u m  absorp t ion  by vanadium monohydride 

during p res su r i za t ion  and i f  hydrogen were desorbed more r ap id ly  

than t r i t i u m  during blowdown, then t r i t i u m  enrichment i n  the  

h igh  p res su re  product would b e  expected. 

relative t o  hydrogen absorp t ion  during p res su r i za t ion  would l ead  

t o  t r i t i u m  enrichment i n  t h e  closed end of a column because of a 

h igher  e f f e c t i v e  migra t ion  v e l o c i t y  f o r  t r i t i um.  T r i t i u m  would 

be f u r t h e r  concentrated i n  the c losed  end of t h e  column by a 

slower r a t e  of desorp t ion  than t h a t  of hydrogen during blowdown. 

Then a lower e f f e c t i v e  migra t ion  v e l o c i t y  would lead t o  r e t e n t i o n  

i n  t h e  closed end. With the  preceding d iscuss ion  i n  mind, exami- 

na t ion  of t he  da ta  and explana t ion  of t he  e f f e c t s  observed can b e  

undertaken. 

Slow t r i t i u m  absorp t ion  

The r a t i o  of the  high p res su re  product mole f r a c t i o n  of HT 

t o  the  feed  mole f r a c t i o n  i s  shown i n  F igure  6 a s  a func t ion  of 

time with the  purge-to-feed r a t i o  G as a parameter. For each 

va lue  of G t h e  r a t i o  inc reases  from un i ty  corresponding t o  the  

feed mole f r a c t i o n  and u l t ima te ly  approaches a s teady  state 

va lue  s i g n i f i c a n t l y  g r e a t e r  than  uni ty .  The t r a n s i e n t  f o r  G=O 

e x h i b i t s  a c y c l i c  o s c i l l a t i o n  which p e r s i s t s  i n  the  s teady  state.  

Such o s c i l l a t i o n s  are no t  unexpected s i n c e  the  experiments a r e  

i n i t i a t e d  a f t e r  e q u i l i b r a t i o n  of one column a t  a high p res su re  

and t h e  o ther  a t  a low pressure .  The p e r s i s t e n c e  of o s c i l l a t i o n s  

i n  the  s teady  s t a t e  may be  due t o  a c y c l i c  v a r i a t i o n  i n  product 

mole f r a c t i o n  similar t o  those  i m p l i c i t  i n  F igure  4 .  

model of t he  opera t ion  of t h e  process when con t ro l l ed  by t h e  

k i n e t i c  i so tope  ef f e c t  would b e  r equ i r ed  t o  expla in  t h e  o s c i l l a -  

t i o n  quan t i t a t ive ly .  

s i e n t s  a t  h igher  va lues  of G may b e  due a t  l e a s t  i n  p a r t  t o  

A d e t a i l e d  

Absence of t he  o s c i l l a t i o n s  i n  the  tran- 
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442 WONG, HILL, AND CHAN 

a x i a l  d i spe r s ion  i n  t h e  l i n e  t o  t h e  counter.  The f low rate i n  

t h i s  l i n e  decreases  as G i n c r e a s e s .  The r e p r o d u c i b i l i t y  of 

t hese  measurements i s  i l l u s t r a t e d  by t h e  agreement of  two runs  

f o r  which G=0.88. Close agreement w a s  f a c i l i t a t e d  by f r equen t ,  

sys temat ic  r e a c t i v a t i o n  of t h e  hydr ide .  

Enrichment of tritium i n  t h e  h igh  p res su re  product might be  

expected a s  a r e s u l t  of t h e  presence of t h e  k i n e t i c  i so tope  e f -  

f e c t .  Accumulation of t r i t i u m  i n  a closed column end following 

p r e s s u r i z a t i o n  r e s u l t s  i n  appearance of a h igh  HT mole f r a c t i o n  

i n  t h e  high p res su re  product i n  t h e  course  of t h e  ensuing feed  

s t ep .  Ampl i f ica t ion  of t h i s  mole f r a c t i o n  i n  subsequent cyc le s  

r e s u l t s  both from t h e  in t roduc t ion  of HT i n t o  t h e  product end of 

a column of purge gas  bear ing  a h igh  HT mole f r a c t i o n  and from 

accumulation i n  t h e  same column end following blowdown as de- 

sc r ibed  e a r l i e r .  Less ampl i f i ca t ion  would r e s u l t  w i th  a smaller 

purge r a t e  and thus  t h e  s teady  state mole f r a c t i o n  would decrease  

a s  G dec reases ,  a s  observed. 

It should be mentioned t h a t  i n  e a r l y  experiments i n  t h i s  

study (15) no e f f e c t  of G was perce ived  i n  t h e  s i n g l e  phase mode. 

It i s  p resen t ly  thought t h a t  t h i s  conclusion was drawn from ex- 

periments i n  which a c t i v a t i o n  of t h e  hydr ide  p a r t i c l e s  w a s  n e i t h e r  

f requent  enough nor  sys temat ic  enough i n  procedure. N o  o the r  

s i g n i f i c a n t  d i f f e r e n c e s  were found between t h e  l a t e r  and e a r l i e r  

work i n  e i t h e r  ope ra t ing  mode. 

Dimensionless h igh  p res su re  product-to-feed mole f r a c t i o n  

r a t i o  t r a n s i e n t s  are shown i n  F igure  7 w i th  ha l f - cyc le  t i m e  A t  

as a parameter. 

h igh  pressure  pene t r a t ion  d i s t ance .  A s  one can see  i n  F igure  7 ,  

t he  smaller by t h e  g r e a t e r  t h e  product enrichment. 

expected consequence of t h e  k i n e t i c  i so tope  e f f e c t  i f  t h e  r e s u l t  

of t h a t  e f f e c t  is  t o  produce a tritium mole f r a c t i o n  p r o f i l e  

which decreases  monotonically from t h e  product end t o  t h e  feed  

end of each column. Such a p r o f i l e  a f t e r  p r e s s u r i z a t i o n  is no t  

unreasonable f o r  a slowly absorbed t r a c e  component i n  a mixture  

wi th  a r a p i d l y  absorbed major component. 

The ha l f -cyc le  t i m e  i s  p ropor t iona l  t o  $, t h e  

This i s  an 
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1.8 

I. 7 

1.6 

1.5 
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1.2 
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I .o 
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At = 18s 

/ 

F =  3.5 x 
PH = 1030 kPa PL=103kPo 

std m3 s-' F =  3.5 x 
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Y T =  373K 

G =  0.80 

EQUILIBRIUM THEORY 
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3 6 
t x 10-3,s 

Figure  7 .  Dependence of h igh  p res su re  product mole f r a c t i o n  
t r a n s i e n t s  on ha l f -cyc le  time. Single-phase 
ope ra t ing  mode. 

A f u r t h e r  expected c h a r a c t e r i s t i c  of t h e  k i n e t i c  i s o t o p e  

e f f e c t  i s  inc rease  of t h e  s t eady  state product-to-feed mole 

f r a c t i o n  r a t i o  wi th  p re s su re  r a t i o .  This w a s  found as shown i n  

F igure  8.  

he ld  cons t an t  a t  103 kPa. The behavior  observed is expected 

because inc rease  o f  t h e  p re s su re  r a t i o  would inc rease  t h e  concen- 

t r a t i o n  of t r i t i u m  i n  t h e  closed end of t h e  column. Thus i f  a 

smal l  p re s su re  r a t i o  w e r e  used a c e r t a i n  nonuniformity i n  mole 

f r a c t i o n  p r o f i l e  would r e s u l t  and a f u r t h e r  i nc rease  i n  p re s su re  

would inc rease  t h e  nonunif ormity . 

L The p res su re  r a t i o  w a s  va r i ed  by vary ing  PH wi th  P 
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Figure 8. Dependence of high p res su re  product mole f r a c t i o n  
t r a n s i e n t s  on p res su re  r a t i o .  Single-phase 
opera t ing  mode. 

The v a r i a t i o n  of t he  s teady  s t a t e  va lues  of t h e  dimensionless 

high p res su re  product HT mole f r a c t i o n  ratios with G, A t  and pH 

seen i n  F igures  6 t o  8 suggests t h a t  t h e r e  are l i m i t i n g  va lues  

of these r a t i o s  a s  el, A t + O ,  and pH/pL-. 

l i m i t s  w a s  no t  sys t ema t i ca l ly  explored experimentally.  It appears 

i n  p r i n c i p l e  however that c o n t r o l  of these  experiments by t h e  

k i n e t i c  i so tope  e f f e c t  would lead  t o  f i n i t e  l i m i t s  no t  much 

g rea t e r  than  those  observed as G+1 and A t - t O  and a very  l a r g e  

l i m i t i n g  r a t i o  as p /p 

no t  be  a r b i t r a r i l y  increased  without encountering a phase 

t r a n s  i t  ion  - 

The ex i s t ence  of such 

becomes l a rge .  In  p r a c t i c e  pH/pL could H L  
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PRESSURE SWING ADSORPTION PROCESS 445 

Two Phase Operating Mode 

Experiments i n  t h i s  mode were conducted a t  298 K between t h e  

same pres su re  limits as those  used i n  t h e  s i n g l e  phase work (See 

F igure  2).  

Depletion of HT i n  t h e  h igh  p res su re  product w a s  p red ic t ed  by 

equi l ibr ium theory  f o r  t h e s e  experiments and was found exper i -  

men t a l l y .  

The e f f e c t s  of t h e  parameters A t  and G were examined. 

By us ing  Equation (14) wi th  J eva lua ted  us ing  t h e  a p p r o p r i a t e  

isotherm and sepa ra t ion  f a c t o r s  f o r  t h e  two-phase experiments i t  

w a s  determined t h a t  G = 0 . 5 5 .  c r i t  
Dimensionless product mole f r a c t i o n  t r a n s i e n t s  w i th  h a l f -  

cyc le  t ime A t  as parameter are shown in Figure  9.  

ments represented ,  6 0 . 8 8 ,  w e l l  above t h e  c r i t i c a l  va lue .  The 

shapes and s t eady  s t a t e  va lues  of t he  t r a n s i e n t s  f o r  t h e  fou r  

runs  wi th  A t  ranging from 600 t o  4800 s are a l l  ve ry  similar 

whereas t h e  s i n g l e  t r a n s i e n t  wi th  A t  = 300 s e x h i b i t s  a r e l a -  

In t h e  exper i -  

I .o 

LL 
). 

rr' a c  > 

0.5 

T=298K 
pH = 1030 kPo F; =I03 kPa - 
G.0.88 
F.4.67 xlO@std m3 s-l 

-At ~300s 
_-  600 s 

2400s 
- 3600s 
. . . . . . . . . I 4800s 

5 10 
NUMBER OF CYCLES 

---_- 

I 

Figure  9. Dependence of h igh  p r e s s u r e  product mole f r a c t i o n  
t r a n s i e n t s  on hal f -cyc le  time. 
mode. 

Two-phase ope ra t ing  
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446 WONG, HILL, AND CHAN 

t i v e l y  small o s c i l l a t i o n  and has a s i g n i f i c a n t l y  higher s teady  

s t a t e  va lue .  The reason f o r  t h e  d i f f e r e n c e  i n  s teady  s t a t e  

va lues  i s  apparent i n  F igure  10. This  f i g u r e  shows a few 

cyc les  of t he  temperature t r a n s i e n t s  measured along a column 

c e n t e r l i n e  f o r  t h r e e  two-phase experiments wi th  d i f f e r e n t  va lues  

of A t .  Because of t h e  l a r g e  hea t  of d ihydr ide  formation (approx- 

imately 40 Kj/rnole H ) assoc ia t ed  wi th  the  phase change, t h e  con- 

s t a n t  temperature ba th  f l u i d  c i r c u l a t i n g  i n  the  column j a c k e t s  

w a s  no t  completely e f f e c t i v e  i n  maintaining t h e  columns a t  a 

cons tan t  temperature of 298 K. (By c o n t r a s t ,  i n  t h e  s i n g l e  phase 

experiments where l i t t l e  change i n  hydride hydrogen content oc- 

curred, t h e  column temperatures always stayed a t  373 K.)  Ins tead  

the  column temperature r o s e  above 298 K as the  r e s u l t  of hydrogen 

absorp t ion  and hea t  release dur ing  t h e  p re s su r i za t ion  and f eed  

s t e p s  and dropped below 298 K because of hydrogen desorp t ion  and 

hea t  absorp t ion  during the  blowdown and purge s t e p s .  Return of 

t h e  temperature t o  298 K over about h a l f  of each ha l f -cyc le  

2 

310 

0 I 2 3 4 
NUMBER OF CYCLES 

Figure 10. Steady s t a t e  temperature t r a n s i e n t s  measured f o r  a 
few cyc le s  along a column c e n t e r l i n e .  
opera t ing  mode. 

Two-phase 
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PRESSURE SWING ADSORPTION PROCESS 447 

occurred wi th  a A t  of 600 s and over about th ree-quar te rs  of each 

ha l f -cyc le  wi th  A t  = 1200 s. For t h e s e  and longer ha l f -cyc les ,  

during a s i g n i f i c a n t  po r t ion  of each ha l f -cyc le  exchange took 

p l ace  as near equi l ibr ium as p o s s i b l e  i n  t h e  two-phase mode. 

(Hys te re s i s  i s  a known phenomenon i n  t h e  two-phase r eg ion  wi th  

absorp t ion  occurr ing  a t  p re s su res  100 t o  200 kPa h igher  than  de- 

so rp t ion .  Thus the  p r e c i s e  pa th  o r  pa ths  followed i n  t h e s e  ex- 

periments i s  not  known. Ca lcu la t ions  us ing  t h e  t h e o r e t i c a l  ex- 

p res s ions  derived e a r l i e r  bu t  incorpora t ing  a h y s t e r e s i s  loop 

ind ica t ed  a n e g l i g i b l e  d i f f e r e n c e  i n  dep le t ion  from t h a t  cor res -  

ponding t o  t h e  298 K pa th  ind ica t ed  i n  F igure  2.) For A t  = 300 s 

on t h e  o the r  hand n e i t h e r  abso rp t ion  nor desorp t ion  was eve r  c ~ m -  

p l e t e ,  f o r  a p l a t eau  a t  298 K w a s  never observed as shown i n  

F igure  10. Reasons f o r  a h igh  va lue  of t h e  s teady  state mole 

f r a c t i o n  r a t i o  f o r  t h e  300 s ha l f -cyc le  t i m e  cannot be  given 

unequivocally.  

i n  t h e  two columns a r e  no t  known. 

e s t ab l i shed  i n  one column a t  low p res su re  when t h e  s o l i d  w a s  i n  

t he  monohydride form. 

was t h e  d ihydr ide .  A l l  t h a t  can be s a i d  is  t h a t  complete phase 

t r a n s i t i o n s  ev iden t ly  were never accomplished and t h a t  a s soc ia t ed  

wi th  t h i s  f a c t  were observa t ions  of a h ighe r  s teady  s ta te  mole 

f r a c t i o n  r a t i o  than  those  found when t h e  phase t r a n s i t i o n  w a s  

completed. 

The pressure-composition pa th  or  pa ths  followed 

Equilibrium w a s  i n i t i a l l y  

The s t a r t i n g  m a t e r i a l  i n  t h e  o t h e r  column 

For experiments wi th  longer ha l f -cyc le  t i m e s ,  i .e . ,  those  

which took p l ace  e s s e n t i a l l y  a t  equi l ibr ium,  equi l ibr ium theory  

would p r e d i c t  f o r  s u p e r - c r i t i c a l  purge-to-feed r a t i o s  no depen- 

dence of t h e  s teady  s t a t e  dep le t ion  on cyc le  time as long as 
breakthrough of feed  i n t o  t h e  h igh  p res su re  product d id  no t  occur.  

The lat ter circumstance d id  not  a r i s e ;  t h e  agreement of t h e  

s t eady  state v a l u e s  is  reasonably c lose ,  and t h e s e  va lues  show 

no sys temat ic  t r end  wi th  A t .  

F a i l u r e  t o  achieve  complete removal of HT from the  h igh  

p res su re  product w i l l  be d iscussed  below i n  connection wi th  t h e  

d i scuss ion  of F igures  11 and 12. 
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EXPERIMENT F.4.67 x std rn3 s-' t -  ----- THEORY G=O 

i pH=1030 kPo PL=103kPo t T=298K 

t nt -1200s 
I I I I 

0 6 12 18 24 
t x ~ ~ - 3 ,  

Figure  11. High p res su re  product mole f r a c t i o n  t r a n s i e n t  ob- 
t a ined  wi th  no purge (G=O). Two-phase.operating mode. 

I I I 

Figure  1 2 .  High p res su re  product mole f r a c t i o n  t r a n s i e n t s  f o r  
G=0.38 and 0.95. Gcrit=0.55. Two-phase opera t ing  
mode. 
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PRESSURE SWING ADSORPTION PROCESS 449 

Experimental dimensionless product-to-feed mole f r a c t i o n  

r a t i o  t r a n s i e n t s  are shown i n  Figures 11 and 1 2  as a func t ion  of 

t h e  purge-to-feed r a t i o  G. The corresponding t r a n s i e n t s  calcu- 

l a t e d  from equilibrium theory are a l s o  shown. A ha l f -cyc le  t i m e  

of 1200 s was used t o  ensure t h a t  t h e  phase t r a n s i t i o n  w a s  com- 

p l e t e  over a major po r t ion  of each half-cycle.  

dep le t ion  increased wi th  G i n  agreement wi th  equi l ibr ium theory. 

An i n t e r e s t i n g  s t r u c t u r e  i s  seen i n  t h e  d e t a i l e d  mole f rac-  

In  gene ra l  HT 

t i o n  r a t i o  v a r i a t i o n  over each cycle.  This  s t r u c t u r e  changes 

wi th  G. For G=O (Figure ll), each odd ha l f -cyc le  begins with a 

sp ike  i n  t h e  r a t i o  which reaches a maximum va lue  of roughly 1.25. 

This  s t r u c t u r e  i s  compared i n  Figure 11 with  the  t h e o r e t i c a l  

t r a n s i e n t  f o r  t h e  case  f o r  which G<G 

us ing  Equations (18)-(22)) .  I n  t h i s  t r a n s i e n t  f o r  t he  f i r s t  f o u r  

cyc le s  the  va lue  of t h e  mole f r a c t i o n  r a t i o  is  0.55 dur ing  each 

odd ha l f -cyc le  and 1 . 0  during each even half-cycle.  During t h e  n i n t h  

ha l f -cyc le  p a r t  of t h e  feed  breaks  through i n t o  t h e  h igh  p res su re  

product. This  breakthrough cont inues  t h e r e a f t e r  and produces a 

s teady  s t a t e  r a t i o  va lue  of 0.62. 

t he  feed  which breaks through is  a po r t ion  of t h a t  introduced 

dur ing  t h e  high pressure  feed s t ep .  A l l  of t h e  l a t te r  and p a r t  

of t he  former are expelled during blowdown. I f  t he  sp ikes  were 

not  present ,  t h e  experimental  and t h e o r e t i c a l  s teady  state r a t i o s  

would be i n  good agreement, al though, f o r  unknown reasons ,  agree- 

ment i s  no t  good i n  t h e  e a r l y  even half-cycles.  

and v h  ( ca l cu la t ed  c r i t  

For t h e  experiment i n  ques t ion  

The du ra t ion  of t h e  sp ikes  was of t h e  order  of 300 t o  400 s 

which is c l o s e  t o  the time during which hydrogen w a s  being ab- 

sorbed a s  ind ica ted  by t h e  temperature t r a n s i e n t s  i n  F igure  10. 

The sp ikes ,  which have peak va lues  w e l l  above t h e  feed  va lue ,  are 

considered t o  be f u r t h e r  evidence of a k i n e t i c  i so tope  e f f e c t  

a s soc ia t ed  wi th  hydrogen absorption. ( I n  comparing the f e a t u r e s  

of Figures 10  and 11 i t  should be remembered t h a t  t he  mole f r ac -  

t i o n  t r a n s i e n t s  are always those  i n  t h e  high p res su re  product as 
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450 WONG, HILL,  AND CHAN 

it emerges a l t e r n a t e l y  from f i r s t  one column and then  the  o the r .  

The temperature t r a n s i e n t s  on t h e  o t h e r  hand a r e  those  found i n  

a s i n g l e  column.) 

S imi la r  bu t  diminished sp ikes  were found i n  an  experiment 

f o r  which e 0 . 0 7  (no t  shown g r a p h i c a l l y ) .  The sp ikes  are missing 

from experiments a t  l a r g e r  va lues  of G (F igure  1 2 ) .  

disappearance i s  assumed t o  r e s u l t  from inc reas ing  a x i a l  d i sper -  

s i o n  i n  t h e  product l i n e  lead ing  t o  t h e  in - l ine  counter ,  as men- 

t ioned i n  connection wi th  o s c i l l a t i o n s  i n  t h e  s i n g l e  phase experi-  

ments. 

Their g radual  

A s  mentioned earlier G =0.55 f o r  t h e  two-phase experiments. c r i t  
F a i l u r e  of t h e  t r a n s i e n t s  w i th  h ighe r  purge-to-feed r a t i o s  - f o r  

t h e  long A t  experiments i n  F igure  9 where e 0 . 8 8  and t h e  exper i -  

ment i n  F igure  1 2  wi th  G 4 . 9 5  - t o  approach zero may have been 

due t o  two causes.  F i r s t ,  t h e  abso rp t ion  and deso rp t ion  proces- 

ses occur on a time s c a l e  of some 300 t o  400 s .  These processes  

a r e  thus  f a r  from being e f f e c t i v e l y  ins tan taneous  and a r e  there-  

f o r e  respons ib le  f o r  mole f r a c t i o n  f r o n t  broadening. Broadening 

would tend t o  prevent complete t r i t i u m  removal. Second, i n t r o -  

duc t ion  of  t r i t i u m  sp ikes  wi th  mole f r a c t i o n s  which i n  t h e  extreme 

might be i n  excess  of t h e  feed  mole f r a c t i o n  i n t o  t h e  product end 

of a column undergoing purging is counter t o  t h e  i d e a l  manner i n  

which p res su re  swing processes  a r e  designed t o  work. I d e a l l y  

purge gas  i s  deple ted  of t r i t i u m  r a t h e r  than  enr iched  i n  t r i t i u m .  

Both t h e  f i n i t e  r a t e s  o f  hydrogen uptake  and release and t h e  

k i n e t i c  i so tope  e f f e c t  would tend t o  prevent complete removal of 

t r i t i u m  from t h e  h igh  p res su re  product.  

Comparison of t h e  Two Operating Modes 

I n  Table 1 a r e  l i s t e d  va lues  of t h e  s t eady  state high and 

low p res su re  product-to-feed mole f r a c t i o n  r a t i o s  and c u t s  

( f r a c t i o n s  of feed  taken o f f  as enriched product) wi th  G as a 

parameter. 

a l l y .  Values of y:DpG/yF and t h e  c u t  0 w e r e  c a l c u l a t e d  from 

The va lues  of G and y F / y F  were obta ined  experiment- 
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PRESSURE SWING ADSORPTION PROCESS 451 

TABLE 1 

Steady S t a t e  S t a g e  Cuts  and S e p a r a t i o n  F a c t o r s  

-6 3 -1 s t d  m s S i n g l e  phase mode: F=3.5x10 , pH=1030 kPa, pL=103 kPa 

T=373 K ,  At=60 s 

PR F BDPG F 
G Y, I Y  Y, / Y  Q a 

s 

0 1 .27  0.87 0.32 1.46 
0.25 1.34 0.89 0.24 1 . 5 0  
0.5 1 . 4 1  0.92 0.16 1.54 
0.75 1.48 0.97 0.08 1.53 
0.88 1 .64  0.98 0.04 1.68 

Two phase mode: F = 4 . 6 7 ~ 1 0 - ~  s t d  m3se1, p = lo30  W a ,  pL=103 kPa 

T=298 K,  At=1200 s 

H 

PR F BDPG F 
G Y, /Y Ym I Y  0 

0 0.62 1.19 0.66 1.92 
0.39 0.44 1.14 0.79 2.59 
0.95 0.29 1.01 0.98 3.48 

t r i t i u m  and hydrogen ba lances .  

s t a g e  s e p a r a t i o n  f a c t o r ,  which is  t h e  enr iched  product  mole f r a c -  

t i o n  d i v i d e d  by t h e  d e p l e t e d  product  mole f r a c t i o n .  For  b o t h  

modes o f  o p e r a t i o n ,  t h e  s t a g e  s e p a r a t i o n  f a c t o r  i n c r e a s e s  w i t h  

G b u t  a t  t h e  same t i m e  t h e  c u t  approaches e i t h e r  z e r o  ( s i n g l e -  

phase mode) o r  u n i t y  (two-phase mode). Cuts near  0.5 can  b e  ob- 

t a i n e d  b u t  on ly  w i t h  modest enr ichment  or d e p l e t i o n .  If  a 

m u l t i s t a g e  cascade  were t o  be based on t h e s e  modes of o p e r a t i o n ,  

it is conce ivable  t h a t  t h e  two-phase p r o c e s s  would b e  used i n  

t h e  e n r i c h i n g  s e c t i o n ,  where c u t s  g r e a t e r  t h a n  0.5 are d e s i r e d ,  

and t h e  s ing le-phase  p r o c e s s  would b e  used i n  t h e  s t r i p p i n g  

s e c t i o n  where c u t s  less t h a n  0 . 5  are  d e s i r e d .  

Also l i s t e d  i s  as, t h e  e f f e c t i v e  D
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CONCLUSIONS 

WONG, HILL, AND CHAN 

Process performance w a s  con t ro l l ed  by one o r  t he  o the r  of 

two i so tope  e f f e c t s ,  depending on t h e  mode of process  opera t ion .  

I n  t h e  s i n g l e  phase mode, a pos tu la ted  k i n e t i c  i so tope  e f f e c t  

appeared to  con t ro l  process performance. Experiments conducted 

with pressure  cyc l ing  e n t i r e l y  i n  t h e  monohydride phase r e su l t ed  

i n  enrichment of HT i n  t h e  h igh  p res su re  product stream r a t h e r  

than t h e  absence of s epa ra t ion  p red ic t ed  by equi l ibr ium theory. 

Enrichment was found t o  inc rease  wi th  purge-to-feed and p res su re  

r a t i o s  and t o  decrease  with ha l f  cyc le  time. It w a s  poss ib l e  t o  

exp la in  the  observed behavior q u a l i t a t i v e l y  i n  terms of a pos tu la ted  

i so tope  e f f e c t  i n  the  r a t e s  of hydrogen absorp t ion  and desorp t ion .  

In  t h e  two phase mode, process  performance w a s  mainly con- 

t r o l l e d  by an equi l ibr ium i so tope  e f f e c t .  Experiments conducted 

wi th  p re s su re  cyc l ing  between t h e  monohydride and d ihydr ide  phases 

r e su l t ed  i n  dep le t ion  of HT i n  t h e  high p res su re  product stream 

as expected with t h e  equi l ibr ium i so tope  e f f e c t  of t h e  vanadium- 

hydrogen system. Experiment and equi l ibr ium theory were i n  good 

agreement a t  s teady  s ta te  a t  low purge-to-feed r a t i o s  although 

the re  w a s  p re sen t  evidence of t he  opera t ion  of t h e  k i n e t i c  i so -  

tope e f f e c t .  A t  purge-to-feed r a t i o s  g r e a t e r  than t h e  c r i t i c a l  

va lue ,  HT removal from t h e  h igh  p res su re  product stream w a s  in- 

complete, cont ra ry  t o  equi l ibr ium expec ta t ions .  This r e s u l t  w a s  

ascr ibed  t o  concent ra t ion  f r o n t  broadening r e s u l t i n g  from f i n i t e  

rates of hydrogen absorp t ion  and desorp t ion  during the  phase 

t r a n s i t i o n ,  t o  tritium enrichment in t h e  product end of t he  

columns due t o  t h e  k i n e t i c  i so tope  e f f e c t ,  and t o  a x i a l  d i f fus ion .  
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NOTATION 

F 
G 
h 
J 

K 

L 

ALL 

n 
P 
4 
R 
t 
A t  
T 

Y 
U 

7. 

Greek le t ters  
c1 

0 

E 

Super sc r ip t s  
BDPG 
PR 
F 

Subsc r ip t s  
av 
c r i t  
H 
L 
n 

empir ica l  cons tan ts  i n  Equation (3) 
concent ra t ion  of spec ie s  i i n  the  gas phase 
concent ra t ion  of hydrogen atoms i n  hydr ide  par- 
t i c l e s  a t  high and low p res su res ,  r e spec t ive ly  
feed flow r a t e  
purge-to-f eed r a t i o  
packed he ight  of column 
c h a r a c t e r i s t i c  s h i f t  f a c t o r  defined by 
Equation (12) 
concent ra t ion  change f a c t o r  def ined  by 
Equation (13) 
pene t r a t ion  d i s t a n c e  of HT concent ra t ion  f r o n t  
n e t  displacement of a t r i t i u m  f r o n t  i n  a h igh  
p res su re  column a f t e r  a complete cyc le  of 
opera t ion ,  def ined  by ALH = (LLJ-LH] 
n e t  displacement of a t r i t i u m  f r o n t  i n  a low 
pres su re  column a f t e r  a complete cyc le  of 
ope ra t ion ,  def ined  by ALL = ILL-L& 
half  -cycle number 
hydrogen p res su re  
smallest i n t e g e r  s a t i s f y i n g  Equation (23 )  
gas  cons tan t  
t i m e  
ha l f -cyc le  t i m e  
t emp era t u r e  
i n t e r s t i t i a l  gas v e l o c i t y  
mole f r a c t i o n  of HT i n  hydrogen stream 
a x i a l  d i s t a n c e  coord ina te  

tr i t ium-pro t ium sepa ra t ion  f ac  t o  r 
s t age  sepa ra t ion  f a c t o r  
s t a g e  c u t ,  f r a c t i o n  of feed taken off as en- 
r i ched  product 
bed void f r a c t i o n  

combined blowdown and purge 
h igh  p res su re  product 
feed 

average 
c r i t i c a l  
h igh  p res su re  
low p res su re  
p e r t a i n s  t o  nth h a l f  cyc le  
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